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Multigrid Algorithms for Solving the Linear 
Boltzmann Equation using First-Order System 

Least-Squares Finite Element Methods 

B. Chang and B. Lee 

1 Introduction 
Solving the linear Boltzmann equation in neutron scattering phenomena presents 
many challenges to  standard numerical schemes in computational physics. For 
an SN discretization, the so-called ray effects pollute the numerical solution. 
This pollution can be viewed mathematically as “contamination” from a poorly 
chosen approximating basis set for the angle component of the discretization- 
Le., collocation in angle is equivalent to discretization with delta basis functions, 
which form a poor approximating basis set. Fortunately, a P N  discretization, 
which uses a better approximating basis set (Le., spherical harmonics), elimi- 
nates these ray effects. Unfortunately, solving for the moments or P N  equations 
is difficult. Moments couple strongly with each other, creating a strongly cou- 
pled system of partial differential equations (pde’s) ; numerical algorithms for 
solving such strongly coupled systems are difficult to develop. In this paper, 
novel algorithms for solving this coupled system are presented. In particular, 
algorithms for solving the PN discretization of the linear Boltzmann equation 
using a first-order system least-squares (FOSLS) methodology (c.f. [l]) are pre- 
sented. 

This paper is an extension of the research reported in [2]. In that paper, 2 
preconditioned conjugate gradient iteration with a block diagonal preconditioner 
was used to solve the system of P N  equations. Each block of this preconditioner 
described only a single diagonal lm-to-Zrn moment coupling, but defined over 
the whole spatial domain. Thus, successively inverting each block of this pre- 
conditioner corresponds to successively solving only the lm - lm equations over 
the whole spatial domain. However, the numerical results presented in that 
paper demonstrate the non-scalibility of this algorithm with respect t o  both the 
number of moinents and the number of spatial nodes used in the P N  discretiza- 
tion. This non-scalibility reflects this scheme’s inability to handle the strong 
moment coupling. 

In this paper, several algorithms that ameloriate some of the moment cou- 
pling are presented. One algorithm consists of a multigrid scheme for the spatial 



coupling of the PN discretization. Here, the unknowns are updated momentwise 
first and then spatialwise (i.e., the running indices for the unknowns are fast& 
for the moment indices than for the spatial indices). In this way, for a Gauss- 
Seidel relaxation scheme, at each spatial node in turn, every moment is updated 
before going to  the next spatial node so that the full moment coupling are con- 
sidered at a fixed node. Physically, local conservation is somewhat enforced at 
each spatial node. 

A second algorithm presented in this paper is a preconditioned conjugate 
gradient iteration with a block diagonal preconditioner that describes the full 
intra-moment coupling. Each diagonal block describes the full 1 - 1 moment 
coupling (i.e., moments lm - Em‘ with -1 5 m,m‘ 5 1) over the whole spatial 
domain. Each of these blocks is solved using a few cycles of the above multigrid 
scheme restricted to  the 1 - H moment block. Thus, local conservation is not 
as strongly enforced as the above multigrid scheme, but still more than what 
is enforced in the method of [a] .  Comparing the results of this preconditioned 
conjugate gradient scheme with the above multigrid scheme will expose the 
relative strength of the inter- and intra-moment coupling in the P N  equations. 

This paper proceeds as follows. In section 2 ,  a summary of the FOSLS 
theory developed in [l] for the isotropic, constant coefficient linear Boltzmann 
equation is reviewed. This theory shows that locally away from the material 
interfaces, by appropriately scaling the system of pde’s, the second-order mo- 
ment coupling essentially describes the whole coupled system of pde’s. This 
fact will be used to  develop our numerical schemes. In section 3, the PN-h 
finite element discretization for the FOSLS formulation is developed. The sys- 
tem of pde’s is explicitly described, and from this description, it will be shown 
why some scattering parameter regimes require special discretization and non- 
standard multigrid schemes, topics which will not be examined in this paper. 
In sections 4 and 5, respectively, the multigrid and preconditioned conjugate 
gradient schemes are described. Multigrid components (relaxation and coarse 
grid correction), methods of homogenization of the fine grid material and scaling 
coefficients, and parallelization issues will be examined. In section 6, computa- 
tional scaling studies for homogeneous material problems will be presented foE 
both the multigrid and the preconditioned conjugate gradient schemes. For the 
multigrid scheme, these results demonstrate scalibility with respect to the num- 
ber of spatial nodes and mild scalibility degradation with respect to the number 
of moments. For the preconditioned conjugate gradient scheme, these results 
demonstrate mild non-scalibility with respect to the number of spatial nodes 
and to  the number of moments. This difference in these two schemes indicate 
a spatially smooth inter-moment coupling error mode that is not handled by 
this latter scheme. Also presented in this section are results for the Kobayashi 
test suite problems (c.f. koba). These numerical results show that material in- 
homogenities have only little affect on the multigrid convergence rates. Finally, 
section 7 describes some future algorithmic research. 
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2 Theory 
c 

Let R x S2 be the product space of a bounded domain R C E’ of unit diameter 
with the unit sphere S2. The single group, time-independent form of the linear 
Boltzmann equation is 

[a. v + ut1 - asP]$(x, 0) = q ( x , R )  E R x S2 

%+,a) = 9 x E aR, n . 0  < 0. (1) 

Here, ut and us are respectively the total cross section and scattering cross 
section, P is the “scattering” operator 

with the normalized differential element 

sin(0) d 0 d 4  
47r ’ dR = 

and $(x,Q) is the angular flux of neutrons. We have assumed an isotropic 
medium. 

In the FOSLS formulation of ( l ) ,  the Boltzmann operator is rewritten as 

L :  = R . V + u t ( I - P ) + g , P ,  (2) 
= R . V + T  

where u, = ut - u8 is the absorption cross section and T := a t ( I -  P) + a,P. 
Introducing the scaling operator 

c 

with inverse 

( I - P ) + P  at51 
A ( I - P ) + & P  a t > l a n d u , > &  
-(I - P )  + utP ut 2 1 and a, _< & 

(3) 
{ :< s-1 = 

= Q ( I -  P )  + c2P, 

the space-angle FOSLS formulation is to minimize the scaled least-squares func- 
tional 



over an appropriate Sobolev space. Note that because of the boundary integral 
in the least-squares functional, the inflow boundary condition need not be el?;- 
forced on this Sobolev space. Note also that !( .  / /  is the L2 norm over both angle 
and space. 

The appropriate Sobolev space is 

v := {w E L2(R x 9) : (s-10. vu, R . vw) + (Tv,w) < co} 

with norm 
/lull$ = (s-% . vw, R . vu) + (Tu; u). 

It was shown in [l] that .F is equivalent to the norm 

Ilull”v, := Il.ll$ + f f $$In ’ fll 
d R  n,C2<0 

over space V. Thus, functional 

is equivalent to 

That is, the first-order terms (S-’T$, 0 .  V$) and (S-lR . V$,T$) are ma- 
jorized by the second-order term (S-’R . V$, R .O$) . 

Now minimizing .F over Tf is equivalent to solving the variational equation 

u($,w) : = (s-lL$,Lw) + 2 s,, s,,,,, +zln. 01 dQd0 

= (4,  s - lLw)  + 2 s,, s,.,,, g a b .  RI dRda 
* 

for all w E V. Because of the norm equivalence, one essentially needs to  develop 
an effective solver or preconditioner for the discrete system corresponding to  the 
bilinear form 

b(v, w) : = (s-10. vw, R . v w )  + (Tw, w) + s,, s,,,,, vEln. RI &do. 

A scalable solution method for the minimization of the least-squares functional 
will require a scalable solver €or this latter system. 
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3 Spherical Harmonic-h (PN-h) Finite Element 
Discretization - 

One of the advantages of a FOSLS formulation is that it leads to  symmetric 
and positive-definite linear systems. For the Boltzmann equation, this allows 
such efficient linear system solvers as multigrid and preconditioned conjugate 
gradient schemes to  be used on the PN discretization of the FOSLS variational 
form. Indeed, standard Galerkin P N  discretizations of the Boltzmann equation 
lead to non-symmetric linear systems that are difficult to  solve efficiently. There 
are efficient Petrov-Galerkin formulations of the SN discretization, but this dis- 
cretization suffers from the ray effect in the thick and thin regions. Nevertheless, 
the PN FOSLS method is not immuned from problems itself, as will be shown 
later. 

The PW discretization consists of taking a truncated spherical harmonic 
expansion of the angular flux: 

@kfl) $JN(X,fl) 
N 1  

(1) 
l = O  m=-l 

The 4 ~ ~ ' s  are the moments or generalized Fourier coefficients and the Em's  are 
the spherical harmonics. Substituting @N into bilinear form a( . ,  .), and testing 
it against w(x)Ktrn, (n), I' = 0, ..., N and m' = -Z', ..., Z', a semi-discretization is 
obtained. Now because 

[I  - P ] h , m ( x ) K r n ( f l )  = 4 l . m ( X ) [ ( I  - P ) K m ( Q ) I ,  

T and S-l simply projects the zero and non-zero moments differently. Moreover, 
because of the norm equivalence, to  analyze this semi-discrete system, only the 
zeroth-order and second-order terms need to be consider. 

For the zeroth-order term, we have 

( T + N , V K J , d )  = < KmITIKm > (#Ern,2')& (54 
Em 

where < .IAl. > is the bra-ket notation for the angular inner product with 
operator A acting on ket 1. >, and where (., -)R is the spatial inner product. For 
the second-order term, we have 

(S-'fl. V ' $ N ,  0 ' VVxl, ,J)  

3 3  

= y (S-1flikirn4Em,i, fljK/rn,.uj) 
i = l j = l  Im 

3 3  



Here, i and j denote spatial differentiation. Note that the sparsity pattern of 
the second-order term depends on both the spatial differentiation operators a d  
the moment coupling created through 

< &$2$s-1fljl&&, > . 

Consider the diagonal lm-lm element of < &[!2+!7-10jl~,m, > . This element 
can be viewed as a full 3 x 3 tensor describing the "diffusion" interaction of 
moment @lrn with itself. Viewed this way, < &mlf12,S-1iljJ&~,, > is a ( N  + 
1)2 x ( N +  1)2 block matrix of 3 x 3 tensors with each lm -1'm' tensor describing 
not only the moment coupling of $lm to $lt,t, but also the spatial anisotropy 
of this moment coupling. Fortunately, this block matrix of tensor has some 
structure. To see this, the completeness property 

l l l m "  

of the spherical harmonics (c.f. Sakurai) is needed. Applying this identity twice, 
we have 

But S-l simply scales the ket Ix,,,,, > by 

(c.f., equation (3)). The orthogonality of spherical harmonics then implies 

1" # 0 
1" = 0 ,  

. 

and so. 
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Figure 1: Intra-moment coupling structure with diagonal 1m - Ern blocks. 

only when i = d +  1. Thus, < xmlS1,S-1fl),31x~m~ > is the weighted product 
of two block tridiagonal matrices, which implies that it is block pentadiagonal. 
In fact, further properties of spherical harmonics show that this non-uniform 
block pentadiagonal matrix is nonzero only when 1 = 1' + 2. Hence, the even 
and odd moments decouple in the second-order term. Figure 1 illustrates this 
structure for I = 4, where the ' x i  blocks are the non-zero block entries and the 
small diagonal blocks are the Zm - Zm 3 x 3 tensors. Finer structure of this 
block pentadiagonal matrix can be found by using additional properties of the 
spherical harmonics (with respect to m). 

Kow, assume an h finite element discretization for the spatial component. 
Using the test function bp(x)xr, ,(R),  where { b p } p  is a basis set for the spatial 
finite element space, the second-order term becomes 

i = l j = 1  Em a 

3 3  r 1 

(bCY,ii bP,j)R 4Em,a. (8) 

Here, if b, at  spatial node a is the standard hat function, then $im,a is the value 
of the Zrn moment at that node. Using the structure of < l > m l f l ~ S - 1 f 2 j l ~ t m t  >, 
the structure of the full discretized second-order term is also block pentadiag- 
onal with a total size of M ( N  f 1)2, where M is the total number of spatial 
nodes. Corresponding to  each 3 x 3 tensor of < ~ m l f l ~ S - l R j l ~ , m ~  > is an 



M x M submatrix describing the discretized spatial coupling of moment lm 
t o  i‘m‘. Alternatively, assuming R to be decomposed into cubic element a d  
assuming (b,} to be trilinear finite elements, the second-order term can be 
re-ordered to have a 27 block stripe structure corresponding to  the 27 point 
stencil of the spatial differentiation operator. Each block on any stripe gives the 
< xmlflzS-lflJI&m, > coupling at a spatial point. Such an ordering is better 
for computation, but is harder to  visualize. Nevertheless, both orderings give 
an idea of the complexity of the linear system corresponding to  a discretization 
of the Pi\; equations. 

Since bilinear form b(., -) also contains (6), an effective solver or precondi- 
tioner must be able to efficiently invert this complex linear system. However, 
for some parameter regimes, a more sophisticated spatial discretization and a 
non-standard multigrid scheme may be needed. A problem arises because scal: 
ing coefficients el and e2 may differ by orders of magnitude. Thus, on the one 
hand, the scaling operator leads to the correct asymptotic limiting solution in 
these regimes (c.f.. [l]), but on the other hand, a complicated discretization and 
multigrid scheme may be required. 

To see this scaling problem, from (7) ,  we see that only the Z“m” = 00 
column and row of < xmlflzlx~/m,~ > and < xl~m,//CIJl~~m/ > respectively 
are scaled by 6. ,411 other rows and columns are scaled by &. Because 
< > ~ m ~ f l z S - l f l J ~ J $ m ~  > is nonzero only when 1’ = I & 2, then only diagonal 
tensored moment blocks Z Z  = 00 and 11 = 11 of the continuous second-order term 
can contain e2 scaled terms. In particular, for regions 1, 2, and 3 respectively, 
these tensored blocks are 

and * 

Block 1Z = 00 is Laplacian, so poses no problems. However, block 1Z = 11 
contains the grad-div operator VV., whose nullspace consists of divergence-free 
functions. In particular, in region 3 and region 2 when ot >> 1 and ca M $, 
this latter block is dominated by the grad-div operator. Hence, divergence-free 
components are “near” the nullspace this moment block, and these components 
pose problems for both standard discretization and standard iterative solvers. 

These divergence-free components still create difficulty when both the zeroth 
and second-order terms of b(., -) are considered. Now the diagonal blocks in 



regions 2 and 3 are 

and 

These divergence-free components are essentially eigenfunctions of the 1Z = 11 
block corresponding to eigenvalue ut. Error components of this form again will 
be poorly damped out by standard iterative solvers. Algorithms that ameloriate 
this problem will not be examined in this paper. 

4 A Multigrid Algorithm 
The solution procedure involves minimizing F($; q,  g) over an appropriate sub- 
space of V. To accomplish this, a Rayleigh-Ritz finite element method is used for 
the spatial discretization and a truncated spherical harmonic expansion is used 
for the angle discretization. For the spatial discretization, let T h  be a triangula- 
tion of domain R into elements of maximal length h = max {diam(K). : K E Th} , 
and let V h  be a finite dimensional subspace of V having the approximation prop- 
erty 

&€Vh inf IIw - u h I I l , ~  5 C~IIVI /~ ,R 

for all 'u E [ W 2 ( R )  x L2(S2)]  . The PN-h finite element space is then 

N 1 

w$ E V h  : ?J$ = q$m(x)~m(R) 
E=O m=-1 

The discrete fine grid minimization problem is 

8 Find $kr E Vh such that 

Equivalently, the discrete problem is 

Find $& E V& such that 

9 



In computation, one solves for the coefficients (pl",. 

is fairly straightforward. Let 
A standard projection multilevel scheme for solving either discrete problems 

be a conforming sequence of coarsenings of triangulation Th, 

v; c v p  c . . . c v; c vi := vh 
a set of nested coarse grid subspaces of V&, the finest subspace, and 

B' = { %,h} 
a suitable (generally local in space) basis set for V(T. (For example, BJ may 
consists of d,,r,'s that are the product of a level j spacial piecewise linear hat 
function and the spherical harmonic xm.) Given an initial approximation $& 
on level j ,  the level 3 relaxation sweep consists of the following cycle 

for each v = 1 ,2 .  ..., Adj, 
for each lm, 0 5 15 N ,  -1 5 m 5 I ,  

$& +- YJ& + ab3,,lm, 

n-here a is chosen to minimize 

(11) 

Since 3 ($I;, + q ,  g) is a quadratic function in cy, this local minimization 
process is simple, and is, in fact, a Gauss-Seidel iteration. Moreover, note that 
the loops range over the moments first so that all moments are updated at a 
fixed spatial node before going to  the next spatial node. Note also that the 
search direction need not be a single element of Bj ,  but can be a larger subse€ 
of Bj. In such case, with this subset denoted by bL, then one needs to find the 
a that minimizes 

F (q!& + ab; ; q,  g ) . 
A good choice for bL is the subset {@,}lm consisting of all bi,lm at node v. 
With this choice, this block Gauss-Seidel iteration simultaneously updates all 
the moments a t  a node. 

Now given a fine grid approximation $& on level 1, then the level 2 coarse 
grid problem is to  find a correction +$ such that 
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Having obtained this correction, +h is updated according to  
c 

Y% zox + +K. 
Applying this procedure recursively yields a multilevel scheme in the usual way. 

There is one modification that can be made to  this multigrid scheme to 
achieve better computational efficiency. Because the material and scaling co- 
efficients can have fine scale properties, to preserve these fine scale properties, 
the above multigrid procedure may require fine scale computation even on the 
coarser levels. For a matrix-free implementation of this multigrid algorithm, 
the amount of fine-scale coarse grid calculations is not nominal. To obtain 
better efficiency, the coefficients can be homogenized to have coarse scale res- 
olution. Thus, the coarse grid calculations can be performed with coarse scale 
computation. A simple homogenization procedure is to appropriately averag? 
the fine scale coefficients. For example, the material and scaling coefficients can 
be arithmetically and harmonically averaged, respectively: if C T : , ~ ? ,  and 
~6 ~, are the coefficients on level 1 in element pLS and level 2 element y is the 
agglomeration 

Y = q=, P31 

then 

' j=l 

Note that harmonic averaging is performed only on the scaling coefficients be- 
cause only these coefficients occur in the diffusion tensors of the second-order 
term, and harmonic averaging is more appropriate for these coefficients (c.f.: 
Dendy). 

However, homogenization leads to a violation of a projection multilevel prin- 
ciple. Using the fine scale coefficients on all levels and so, applying fine-scale 
coarse grid operations, the least-square functional norm is guaranteed to de- 
crease at each step of this multigrid process. In particular, at each step of the 
relaxation and coarse grid correction procedures, a subspace minimization cor- 
rection is performed, which implies a decrease in the least-squares functional 
norm. But since homogenization changes the coefficients on each level, a coarse 
grid problem corresponds to a minimization problem with a different least- 
squares functional. Hence, a coarse grid correction is not a subspace correction 
to the fine level problem. Indeed, for rapidly varying coefficients, it is possible 



for a coarse grid correction from a very coarse level to  completely pollute the 
fine level approximation. Thus, extra measures must be taken when applying 
coefficient homogenization. 

Now whether the coefficients are homogenized or not on the coarser grids, 
by viewing this algorithm from a projection multilevel or subspace correction 
viewpoint and noticing that all the multigrid components can be performed with 
spatially local operations, one sees that parallelization is a minor issue. First, 
one needs to  partition the finest computational grid for good processor load bal- 
ancing. For example, assume that R and the processor topology are rectangular 
solids with an equal number of processors in each direction. Then since these 3- 
dimensional domains can be written as a tensor product of three 1-dimensional 
domains, the processor decomposition can be viewed as a tensor product of three 
1-dimensional processor topology decompositions. Each 1-dimensional grid do; 
main is partitioned as equally as possible among the processors in that direction: 
The tensor product of these three 1-dimensional processor topology decomposi- 
tions then gives the complete 3-dimensional processor topology decomposition 
on the finest level. 

Next, one needs t o  introduce a processor topology decomposition on the 
coarser levels. Unfortunately. as we descend to  coarser levels, it is possible to 
have idle processors when the number of processors exceeds the number of grid 
nodes. Nevertheless, this multigrid load-balancing bottleneck is not too serious. 

Each processor must also have z layers of ghost nodes in each direction. 
This ensures that each processor has all the information needed to perform 
a calculation without processor waiting time. This means that appropriate 
globally updated information must be communicated to other processors. This 
occurs, for example, after relaxation, residual calculation, and integrid transfer 
operations. For relaxation, this also implies a multi-colour ordering of the spatial 
nodes. For a 27-point spatial finite element discretization, an 8-colour ordering 
is needed. Without this re-ordering, a Gauss-Seidel sweep is not performed, and 
so, the global least-squares functional need not decrease after each step of this 
relaxation. 

All of the above parallel implementation features were used in our parallet 
code. 

5 A Preconditioned Conjugate Gradient Algo- 
rit hm 

It was shown in [2] that the diagonal Em - Em block preconditioner does not 
scale with the number of spatial nodes. One reason for this poor performance is 
the strength of the neglected intra-moment and inter-moment coupling in that 
block preconditioner. By using a block diagonal preconditioner with the blocks 
being the full intra-moment coupling, weak scalibility can be achieved. Each of 



these intra-moment blocks can be approximately inverted with a few cycles of 
the above multigrid scheme restricted to that intra-moment block. Comparing 
the performance of this algorithm to the above multigrid algorithm will expose 
the relative strength of the intra-moment and inter-moment coupling of the PN 
equations. This will be numerically analyzed in section 6. 

6 Numerical Experiments 
The above P,-h finite element discretization of the FOSLS formulation of the 
transport equation was implemented. Angle integrals involving spherical har- 
monics were computed using analytical formulas, and the spatial moments were 
discretized with piecewise trilinear functions on rectangular solids. Using the 
above observation of the problematic P1-P1 sub-system in region 3, only re: 
gions 1 and 2 were considered- the goal in these experiments was to  investigate 
scalability with increasing number of nodes. We studied 4 cases P, : n=l ,  3, 6 ,  
and 9. In all cases, the coefficients are constants. In the test problem, the right 
hand side is set to zero and a random function is chosen as an initial guess. For 
a fixed number of moments, we tabulated the the iteration count and the solve 
time against the number of spatial nodes in Tables 1 and 2 .  The results for 
a 1'-cycle and a W-cycle are recorded in Tables 1 and 2 respectively. In each 
table, we also record the results for runs with coefficients in regions 1 and 2.  In 
region 1, we found that the V-cycle iteration slows down because the V-cycle 
does not damp out all the smooth modes of the FOSLS's operator. However 
these smooth modes were damped out by a multi-grid W-cycle. This is shown 
by the fact the W-cycle method needs fewer iterations to converge in region 1 
than the v-cycle method. The reason is that the W-cycle puts more effort into 
coarse grid smoothing than a multi-grid V-cycle. 

A perusal of the data in the tables reveals that the algorithm scales spatially. 
We also note that the the iteration count increases linearly with increasing 
number of moments. While the multigrid W-cycle takes fewer iterations to 
converge than the multi-grid V-cycle, the multigrid W-cycle takes more time 
to converge than the multi-grid V-cycle. It is also clear from Table 1 that t h e  
multigrid V-cycle is an effective solver for problems in region 2, but is not as 
good in region 1. 

7 Future Research 
We have formulated a theory to handle the grad-div operator in region 3. It 
involve a Helmholtz decomposition of the PI moments. Divergence free finite 
element basis can also be used, but are of higher order and thus more difficult to 
code than linear elements. We can generalize the code to solve the multigroup 
BTE. We believe that we can multi-grid the group discretization. 
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Pn  I Nodes I Unk 

4 x 12g3 
2573 4 x 2573 

16 x 17 

16 x 653 
12g3 16 x 12g3 

49 x 333 
49 x 6j3  

100 x 333 

- -~~ 

- Region 1- -- Region 2 
Proc I Unk/proc Iter I Time Iter 1 Time; 

134,168 267 296 
512 132,614 9 270 10 302 

68,656 495 413 
467 

1 35,721 34 1,381 12 496 
8 30,092 41 1,493 19 698 

64 27,514 43 1,607 24 903 
512 26,282 45 1,743 29 1,142 
1 240,737 40 9,224 20 4,591 

512 205,444 47 10,191 30 6,320 

61,413 9,757 3; 979 
10; 798 5,652 

Table 1: V-cycle results for two cases studies of cross sections. In region 1; 
crt = .1 and cra = .05. In region 2 ,  crt = 10 and ga = 5. 
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r 

P n  Nodes Unk Proc Unk/proc 
1 333 4 x 333 1 143,748 
1 653 4 x 653 8 137,313 
1 12g3 4 x 12g3 64 134,168 
1 2573 4 x 2573 512 132,614 
3 173 16 x 173 1 78,608 
3 333 16 x 333 8 71,874 
3 6S3 16 x 6S3 64 68,656 
3 12g3 16 x 12g3 512 67,084 
6 g3 49 x 93 1 35,721 
6 173 49 x 173 8 30,092 
6 333 49 x 333 64 27,514 
6 6 j 3  49 x 653 512 26,282 
6 173 49 x 173 1 240,737 
6 12g3 49 x 12g3 512 205,444 
9 93 100 x g3 1 72,900 
9 173 1OOx 173 8 61,413 
9 333 100 x 333 64 56,152 
9 653 100 x 6!i3 512 53,637 

Region 1 Region 2 
Iter Time Iter Time 

9 347 10 381 
9 337 10 370 
8 329 10 404 
8 446 10 625 
17 541 14 446 
1'7 522 16 497 
17 576 17 582 
17 722 18 821 
33 1,589 12 599 
34 1,618 19 918 
35 1,865 24 1,327 
36 2,656 28 1,961 
34 9,662 20 5,749 
34 10,487 30 9,537 
50 10,017 14 2,860 
57 11,086 26 5,235 
59 12,561 38 8,264 
60 15,548 45 ' 12,017 
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